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SUMMARY

In this study we consider parallel conjugate gradient solution of sparse systems arising from the
least-squares mixed finite element method. Of particular interest are transport problems involving
convection. The least-squares approach leads to a symmetric positive system and the conjugate gradient
scheme is directly applicable. The scheme is applied to both the convection–diffusion equation and to the
stationary Navier–Stokes equations. Here we demonstrate parallel solution and performance studies for
a representative MIMD parallel computer with hypercube architecture. © 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Most numerical methods for solving transport problems involving convection lead to non-sym-
metric algebraic systems. Frequently these problems involve high-resolution grids, and iterative
methods such as the biconjugate gradient scheme are utilized. For large-scale applications
these problems are best addressed on distributed parallel computer systems. Least-squares
finite element schemes generate symmetric positive systems and the conjugate gradient method
can be applied directly. The performance of this iterative solution strategy for least-squares
finite element approximation of flow problems on distributed parallel computers is clearly of
relevance to computational fluid dynamics (CFD). Recently, considerable attention has been
focused on the performance of iterative methods for solving finite difference and finite element
systems on distributed memory multiprocessors. The solution algorithms include gradient-type
methods such as the conjugate gradient method as well as the multigrid method. Parallel
schemes have been implemented, based either on domain decomposition [1,2] or matrix
decomposition [3,4]. In the latter case, when unstructured grids are used, the sparse structure
may be quite irregular and this leads to irregular, long distance communication requirements
that severely degrade the algorithms. On the other hand, when domain decomposition can be
applied as in the applications of interest here, it is optimal for uniformly balanced structured
grids and appropriate node or element numbering. Likewise, parallel schemes based on domain
decomposition can be extended to unstructured grids if used with suitable partitioning
strategies for parallel load balancing [5]. Most studies for parallel CG are based on standard
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finite difference and finite element methods and relatively little is known for the least-squares
mixed finite element method considered here.

There are several studies in the literature where schemes based on collocation, least-squares
and other weighted-residual ideas have been discussed [6–8]. Generally, the Galerkin approach
is preferable because of the reduced smoothness assumptions on the approximation and the
ability to exploit natural boundary conditions. If the problem is recast as a lower order system
then mixed methods may be used. This mixed approach for the Galerkin formulation is
popular among certain researchers because the flux or stress now enters explicitly in the
formulation [9–11]. It also leads to a preferable formulation for the least-squares method for
similar reasons and the smoothness restrictions are relaxed accordingly [12–14]. Moreover, in
both theoretical and numerical studies we have demonstrated [15,16] that the least-squares
finite element formulation circumvents the consistency constraints (LBB or inf–sup restric-
tions) of the mixed Galerkin finite element method (FEM) [10,17]. Finally, the least-squares
approach automatically generates a symmetric positive system.

Hence there are several attractive features to the least-squares approach. However, there are
a number of issues and open questions that still need to be addressed. These include, e.g. the
question of weight selection in the least-squares residual statement, mesh sensitivity of the
method, h and p refinement issues and the numerical performance of the method. In a previous
paper [18] we developed a class of multilevel preconditioning strategies based on the approach
of Chan and Vassilevski [19] and showed for some simple scalar elliptic problems that the
preconditioned system converged essentially independent of the mesh size. In the present work
we first investigate the conditioning of the basic least-squares system and then consider parallel
solution with simpler preconditioners than in Reference [19]. Parallel performance studies for
both convection–diffusion and Navier–Stokes test problems are included.

The outline of the treatment is as follows: In Section 1 we briefly present the least-squares
formulation in a general operator form. Next, the basic conjugate gradient algorithm and
simple preconditioners of interest here are summarized together with the convergence proper-
ties. A Cartesian domain decomposition for topological unions of rectangles, which is used as
one of the basic data structures in our parallel software package for preconditioning conjugate
gradient (PCG) [20,21], is described in Section 2. Results are presented in Section 3 for a
representative linear convection–diffusion problem and for a viscous flow problem. These
include parallel performance studies for both shared memory and distributed memory parallel
architectures.

2. LEAST-SQUARES FINITE ELEMENT FORMULATION AND CONJUGATE
GRADIENT SOLUTION

Most standard schemes (such as the Galerkin finite element method and finite difference
method) lead to non-symmetric algebraic systems on discretization of convective problems.
This implies that non-symmetric iterative solution schemes such as biconjugate gradient (BCG)
rather than conjugate gradient must be applied. BCG is known to ‘breakdown’ or stagnate and
both failures have been observed in our previous studies for Navier–Stokes using Galerkin
FEM. On the other hand, one can prove convergence of CG for symmetric positive systems.

For convenience, let us consider a linear elliptic boundary value problem cast as the
first-order system

Lz= f in V, (1)
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with appropriate data Bz=g on the boundary (V. Here L is a first-order differential operator
for the system and B is a corresponding operator on the boundary. For example, a
second-order convection–diffusion problem

−9 · (a9u)+c · 9u=d (2)

can be recast into a first-order system as�c · 9

a9

9 ·
1
n�u

s

n
=
�d

0
n

, (3)

which corresponds to Equation (1) with z= (u, s) where u is a scalar and s is a vector. This
form is typical of most mixed problems of interest where s denotes the flux and is related to
u through a constitutive equation. However, more general forms are permitted. Here we
assume, of course, that variables have first been dimensionally scaled.

For admissible trial function z we can introduce the associated residuals for the differential
equation and boundary equations. For simplicity of exposition, let us assume that the
boundary conditions are satisfied a priori. The interior residual is then R=Lz− f and the
least-squares functional is

I=
1
2
&

V
RTR dx. (4)

Applying the stationary condition dI=0 implies&
V

(Ly)T(Lz) dx=
&

V
(Ly)Tf dx, (5)

where y=dz is the test function. Substituting for L and expanding z= (u, s), y= (6, t), we get&
V

[(9 · t+c · 96)(9 · s+c · 9u)+ (t+a96) · (s+a9u)] dx=
&

V
[(9 · t+c · 96)d ] dx,

(6)

where 6=du, t=ds. We write Equation (6) in standard notation as: find (u, s) satisfying the
specified boundary conditions and such that

a(u, s ; 6, t)=b(6, t), (7)

for all admissible 7= (6, t) where a( · ; · ) and b( · ) denote the respective functionals in
Equation (6). Then Equation (6) or equivalently (7) provides an alternative least-squares
variational statement and an approximate formulation can be developed within this mathemat-
ical framework. In particular, a mixed least-squares finite element scheme can be constructed
instead of a mixed Galerkin scheme.

Accordingly, let us construct a finite element partition of the domain and introduce a
corresponding basis to define the approximation trial and test subspaces. Then the approxi-
mate formulation becomes: find uh, sh satisfying the boundary conditions and such that

a(uh, sh ; 6h, th)=b(6h, th), (8)

for all admissible 6h, th.
Introducing finite element expansions uh=�j=1

J ujfj, sh=�m=1
M smxm and setting 6h=fi,

th=xl where fj, xm denote the finite element basis functions and uj, sm are the nodal
unknowns, the least-squares algebraic system from Equation (7) has the form
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where

Aij
uu=

&
V

[(c · 9fi)(c · 9fj)+ (a9fi) · (a9fj)] dx,

Aim
us=

&
V

[(c · 9fi)(9 · xm)+ (a9fi) · xm ] dx,

Alj
su=

&
V

[(9 · xl)(c · 9fj)+xl · (a9fj)] dx,

Alm
ss=

&
V

[(9 · xl)(9 · xm)+xl · xm ] dx,

bi
u=

&
V

[(c · 9fi)d ] dx,

bl
s=0,

for i, j=1, 2, . . . , J and l, m=1, 2, . . . , M. Finally, we enforce the specified boundary
conditions in Equation (9) and the resulting system can be written compactly as

Ax=b, (10)

where A is the block matrix and x is the vector of nodal solution unknowns from Equation (9).
The least-squares property in Equation (4) implies A is symmetric positive definite, which

suggests that a preconditioned conjugate gradient iterative solver for Equation (10) might be
effective [22–24]. Accordingly, let us introduce a preconditioner Q so that the preconditioned
system is equivalent to Q−1Ax=Q−1b. The basic preconditioned conjugate gradient al-
gorithm is then:

For x (0) given, construct

x (n+1)=x (n)+lnp (n), n=0, 1, . . . , (11)

where the direction p (n) and step size ln are given by

p (n)=
!d (0),

d (n)+anp (n−1),
n=0
n"0

,

an=
(r (n), d (n))

(r (n−1), d (n−1))
,

ln=
(r (n), d (n))

(p (n), Ap (n))
,

with

d (n)=Q−1r (n),

r (n)=
! b−Ax (0),

r (n−1)+ln−1Ap (n−1),
n=0
n"0

.

As stopping test we use the relative residual
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r (n)0

r (0)0

5z, (12)

where z is a specified tolerance Some simple preconditioners based directly on the structure of
A can be specified as follows: first assume A is expressed in the form A=D−CL−CU where
D is a diagonal matrix, CL is a strictly lower triangular matrix and CU is a strictly upper
triangular matrix. Then we can introduce, for example, the following basic preconditioners

Q=Í
Ã

Ã

Ã

Ã

Á

Ä

I
D

1
2−v

�1
v

D−CL
��1

v
D
�−1�1

v
D−CU

�
ps(A)−1

(RF)
(J)

(SSOR)

(LSP)

(13)

Here the RF–CG scheme (Richardson iteration) reduces simply to the basic conjugate
gradient method, J–CG is Jacobi preconditioning, SSOR–CG uses a symmetric overrelaxation
preconditioner and LSP–CG uses a least-squares polynomial preconditioner where the polyno-
mial ps is selected such that f(z)=1−ps(z)z has minimum norm over a domain that contains
the spectrum of A.

Convergence of the PCG scheme depends on the condition number k(A). In the present
work for least-squares systems, A is symmetric positive and we apply symmetric positive
preconditioners Q. Then, the condition number for the preconditioned system is the ratio of
the maximum and minimum eigenvalues of Q−1 A, i.e. k=lmax/lmin. Now let x be the exact
solution of the linear system. The iterate error e (n)=x−x (n) satisfies the Chebyshev bound [25]

e (n)A

e (0)A

51/cosh
�

n log
�
k−1


k+1

�n
, (14)

where  · A denotes the A-norm of the vector. We have the following result for the algebraic
residual r (n)=b−Ax (n) in terms of the condition number k for Q−1A and k̂ for A,

r (n)0

r (0)0

5
k̂
e (n)A

e (0)A

. (15)

Now for large k,

1/cosh
�

n log
�
k−1


k+1

�n
:2

�
k−1


k+1

nn

:2
�

1−
2


k

nn

.

Using this in the bound (14) for a tolerance z, 2[1−2/
k ]n5z implies n]1/2
k log(2/z) so
the number of iterations grows as 
k. A similar calculation for the bound in Equation (15)
yields n]
k log(2
k̂/z)/2.

Recall that for standard finite difference and Galerkin linear finite element schemes applied
to second-order elliptic problems, the condition number varies as O(h−2) so the number of
iterations grows with mesh refinement as O(h−1) where h is the mesh size [26]. Similarly, if the
first-order system is discretized by first-order differencing or a least-squares linear finite
element scheme is applied, the condition number is again O(h−2) and the iteration count varies
as O(h−1). This can be contrasted with the least-squares algebraic system (normal equations)
for the discretized higher order problem which has condition number O(h−4). Further
discussion with numerical results and performance studies are provided later in Section 3. In
the next section we briefly outline a parallel partitioning strategy and simple data structure.
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3. PARALLEL PCG SOLUTION

In previous studies we have developed a class of element-by-element preconditioned conjugate
gradient algorithms and parallel variants of these methods [1]. We have also applied these ideas
for least-squares finite element systems and serial processors [13,14,27]. Since these approaches
involve either a parallel element-by-element strategy directly or a parallel subdomain form of
this algorithm they are not limited to structured grids or to Cartesian processor partitionings.
Similarly, the present least-squares finite element scheme can be applied to domain decompo-
sitions by elements or nodes involving unstructured grids. However, for simplicity and clarity
of presentation in the present work we will consider the structured grid case with a simple
Cartesian block partitioning. This permits us to explore and analyse the effect of communica-
tion/computation more explicitly and to demonstrate the ‘cache management’ issue and
treatment for the test cases on the Intel parallel system. Our scheme can be applied directly to
partitionings on the reference domain for mapped structured grids and block structured grids.

In the present implementation, we locally assemble the nodal contributions so that a
stencil-based data structure can be used. Since the grid is structured there is an equivalent (I, J)
or (I, J, K) Cartesian reference grid in 2D or 3D respectively. Then a simple Cartesian domain
decomposition with natural ordering of the processors can be constructed in the reference
domain. Load balancing between processors is also easily achieved. For example, in 2D if there
are G=Gx×Gy grid points and P=Px×Py processors, then a partitioning to approximately
G/P=g points per processor is desirable, where g=gx×gy, gx=Gx/Px and gy=Gy/Py. This
approach will be exact if Gx, Gy are multiples of Px and Py. Otherwise, some adjustment of this
approximate processor partition will be needed and the number of grid points per processor
may vary slightly.

As an example, a 4×4 partition of a square reference domain for 16 processors is shown in
Figure 1 with associated subgrids gi, i=0, 1, . . . , 15. For each processor subdomain the
least-squares finite element matrix and vector contributions are computed. Since the processor

Figure 1. A grid partition with 16 processors.
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partition boundaries intersect certain elements, these elements reside in more than one
processor. Hence element matrix contributions for these elements are duplicated in parallel on
adjacent processors in the partition. This partition could also be interpreted as an overlapping
domain decomposition by elements with single layer overlap for the matrix and vector
computation. An alternative non-overlapping partitioning by elements could also be used with
the processor interface now aligned with element boundaries, which would imply that those
nodes on the processor interface would be shared.

As indicated above, a stencil-based data structure is used in the present work. Here the
element contributions in each processor subdomain are locally assembled at the nodes. While
this approach lacks the convenience of the element-by-element strategy it reduces the number
of multiply operations in the conjugate gradient calculations. For the bilinear element basis
this implies that contributions from the patch of elements surrounding each interior node are
accumulated to yield a centered nine-point stencil. As seen in Figure 1, except for the boundary
nodes, which have zero padded stencils, the stencils corresponding to the periphery nodes of
each subdomain will overlap the adjacent subdomain, e.g. the stencil marked in g5 is local,
while the one marked in g10 overlaps with the nodal values to be supplied from g5, g6 and g9.
Since we are dealing with a first-order system and least-squares mixed method this is a block
stencil with block size equal to the number of nodal unknowns. For higher degree elements the
stencil size will vary locally depending on whether the node is a vertex node, edge node or
element interior node. For example, the biquadratic element leads to a 25-point block stencil
for each vertex (corner) node, a 15-point block stencil for each edge node and a nine-point
block stencil for the interior node. In practice it is simplest to zero-pad the stencil to fixed size
since this simplifies the array treatment and efficiency is only slightly degraded. Hence the
matrix A may be conveniently stored by stencils (rows) for each processor subdomain.
However, we emphasize that the ideas can be extended to treat an irregular partitioning for
unstructured grids as shown in our other work on parallel CFD.

Let us first consider parallel distributed computation of the sparse system (10) in the stencil
format. Our least-squares formulation is element-based but the processor partition is by grid
points as indicated in Figure 1. Thus elements containing the processor partition lines are
effectively shared by adjacent processors. Since the data structure and solver are stencil-based,
this implies that computations for shared elements are duplicated. A strip of fictitious elements
is added at the exterior boundary to avoid special coding for boundary subdomains. Thus the
basic computation for parallel matrix formation over the processor subdomains proceeds as
follows: for element e=1, . . . , E associated with subdomain pi,

� Compute the element matrix and vector contributions Ae(in, jn, id, jd), be(in, id), where in,
jn=1, . . . , Ne, id, jd=1, . . . , Dp with Ne the number of grid points per element and Dp the
number of degrees of freedom per grid point.

� Enforce the boundary conditions at the element level in Ae and be above.
� Assemble element contributions to stencils for the grid points to generate the submatrix and

vector contributions A(ix, jy, id, jd, is), b(ix, iy, id) with ix=1, . . . , gx, iy=1, . . . , gy, is=
1, . . . , S where S is the number of points in the stencil and gx, gy define the processor grid
as before. Natural ordering of grid points is presumed within each processor subdomain.

Having assembled the system locally in parallel in the stencil data structure, solution by
conjugate gradient iteration involves repeated matrix–vector products, dot products and
DAXPY operations. More specifically, each conjugate gradient iteration involves one matrix–
vector product (MV, y=Ax), two dot products (DOT, a=x · y), two DAXPY and one
DAYPX operations (DAXY, y=y+ax, y=x+ay). Assume the subdomain vector length of
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Figure 2. Picture frames on a representative subgrid.

x and y is N6=gx×gy×Dp on each processor. Then the operation counts per CG iteration are
Cmv=2SDpN6 for a matrix–vector product, Cdot=4N6 for two dot products, and Cdaxy=6N6
for two DAXPY and one DAYPX computations. Hence, the total operation count for CG
with Ncg iterations is Ccg= (2SDp+10)N6Ncg. The relative fractions of the operations for MV,
DAXY, DOT over CG are 1/(1+5/SDp), 3/(SDp+5) and 2/(SDp+5). For example, in
solving a convection–diffusion problem (Dp=3) using bilinear elements (S=9), The percent-
ages of the operations are 84.385, 9.375, and 6.250% for MV, DAXY, DOT, respectively.
Clearly, the matrix–vector product requires the greatest fraction of the computation, and this
fraction will increase with increasing Dp.

Since the processor partition associates each grid point with a specific processor, the
DAXPY and DAYPX operations can be computed locally in parallel without communication.
Local dot products are computed in parallel on the processors and scalar results are then
accumulated across processors using global summation with fan-in followed by a broadcast
with fan-out (minimum span tree) [28]. The communication for the dot product will increase
logarithmically with increasing number of processors. The matrix–vector products are com-
puted in parallel using a special cache mirror treatment together with overlapping of commu-
nication and computation [29].

Now, let us examine the relative computation and communication costs related to the
matrix–vector product in some detail. To accommodate the stencil overlap at the processor
partition boundaries we introduce a related domain decomposition which is referred to here
for convenience in interpretation as the ‘picture frame’ representation shown in Figure 2. For
the bilinear elements considered here, any grid point is connected to, at most, its eight
neighbors in the associated four-element patch. The grid points of Figure 2 interior to the
picture are marked (�) and their stencils are local to the processor. Those in the inner frame
marked (Õ) are referenced by stencils centered on neighbor processors and those in the outer
frame marked (�) are referenced by inner frame stencils centered on the present processor.
Hence the inner-frame consists of the single row (or column) of nodes next to each of the
processor lines. These data for the inner-frame points can be exchanged with the data for the
outer frame points at the eight adjacent neighbor processors as indicated in Figure 3.

This exchange is first performed asynchronously as follows: first post the receive buffers as
targets for the neighbor processors and then send the values on the inner picture frame nodes.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 1421–1440 (1998)
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In order to prevent the data from arriving before the receive buffer is posted, a zero byte
synchronization is utilized between posting the receives and performing the sends. The MV
computation for the interior points is initialized as communication starts so that the commu-
nication and computation are overlapped. After completing the part of HV for the interior
points and receiving all the data from the outer frame points, the remaining MV calculations
for the inner frame points are carried out.

To begin, let us assume the communication and computation do not overlap, i.e. the
synchronous algorithm is used; the time to compute n floating point operations is ng ; the time
to exchange n values is a+nb, where a is mean start-up time and b is per item mean transfer
time. Here, the mean start-up or transfer time can be taken as the average between any two
processors (neighbor or non-neighbor) since worm-hole routing applies in the iPSC/860
hypercube architecture used in the present work. As an example, consider the grid partition
with 16 processors in Figure 1; the time to exchange data from all neighbor processors is

Tmvc=2[2a+ (gx+gy)Dpb ]+4(a+Dpb),

where the first part is for the four edge neighbors and the second part is for the four corner
neighbors, as shown in Figure 3. The computation time for the matrix–vector product is

Tmvi=2(gx−2)(gy−2)DpSg,

for the interior points and

Tmvif=2(gx+gy−2)DpSg,

for the inner frame points. Hence, the total time for MV with synchronous communication
would be

Tmvsy=Tmvif+Tmvi+Tmvc. (16)

Each subgrid on a 2D grid will communicate with at most eight neighbor subgrids, therefore,
no extra communication cost will be introduced when P]16. Hence, this algorithm is effective
when using large numbers of processors to solve large scale problems.

Figure 3. Communications for inner frame points.
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Table I. Estimated timing for MV with 16 processors

Time (ms)Grid (gx×gy)

Tmv Tmvi TmvcTmvif

1.620.27710×10 1.98 0.078
1.931.910.1904.0323×23
1.962.0924×24 4.25 0.199
2.589.9550×50 13.0 0.423

37.7 0.769 33.490×90 3.54

Next, let us consider the case in our implementation, where the communication time Tmvc

and the computation time Tmvi are overlapped using asynchronous communication as dis-
cussed previously. The total time for MV is then reduced to

Tmvasy:Tmvif+max(Tmvi, Tmvc). (17)

In the estimate shown later, Tmvi\Tmvc for medium to large size problems and communication
cost can be ignored.

Finally, the two DAXPY and one DAYPX computations require

Tdaxy=6gxgyDpg, (18)

and the two dot products require

Tdot=4gxgyDpg+2 log2(p)(a+b+g)+2 log2(p)(a+b), (19)

where the first part is for the local dot product computation, the second part is for the global
summation of the scalar result using the minimum span tree (fan-in), and the last part is for
the broadcast of the scalar result using the minimum span tree (fan-out).

As an example, consider the solution of a convection–diffusion problem using the least-
squares mixed method (Dp=3) using a 4×4 partition of processors with gx=gy. Assuming
a=170 ms, b=2 ms and g=0.08 ms estimated from the CG timing experiment (see Tables V
and VI, g is from the CG rate of 12.54 Mflops s−1 with one processor; a and b are from the
DOT rate of 9.21 Mflops s−1 with 16 processors). The estimated time for one matrix–vector
product with synchronous communication is listed in Table I. When gx=gy=24, the compu-
tation time for interior points is about the same as the frame communication time, which is
46% of the overall MV time. For this medium problem, using asynchronous communication
yields approximately a 46% improvement over using synchronous communication. For a larger
subdomain problem with gx=gy=90, the communication time is 9% of the overall MV time,
and the asynchronous communication still offers some improvement. Hence, the benefits of

Table II. Estimated timing for CG with 16 processors

Proc. rate Overall rateMethod Time
(ms) (Mflops s−1) (Mflops s−1)

59.96 179CG 11.19
37.77 11.33 181MV

12.50 200DAXY 11.66
10.53 9.23 148DOT

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 1421–1440 (1998)
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Figure 4. LSFECG solution for a convection–diffusiion problem.

asynchronous communication will be most noticeable for the fixed problem size speed-up as
gx, gy reduce with increasing number of processors.

For the same problem, the estimated time and rates for one CG iteration with synchronous
communication are listed in Table II for gx=gy=90, MV, DAXY and DOT take 63, 19 and
18% of the CG time respectively. Compared with our previous operation count percentages of
computation as 84.385, 9.375 and 6.250%, we conclude that the MV implementation is
relatively efficient, since 84% of CG computation is estimated to take only 63% of the CG
time. The DAXY and DOT are less efficient, compared with MV. The processor rate for CG
is 11.19 Mflops s−1. MV runs at 11.33 Mflops s−1. The DAXY rate (12.5 Mflops s−1) is
better than the MV rate, and the DOT rate (9.23 Mflops s−1) is worse. When more processors
are used, the MV and DAXY rates will remain the same, but the DOT rate will decrease. For
16 processors with synchronous communication, the overall rate for CG is 179 Mflops s−1 and
this will improve with the use of asynchronous communication on the matrix–vector product.

4. RESULTS

4.1. Test problems and LSFECG solutions

The first test problem is the stationary convection–diffusion problem

−9 · (a9u)+c · 9u=0, (x, y)� [0, 1]× [0, 1], (20)

u(x, 0)=0, u(x, 1)=e2x−2 sinh(x)/sinh(1), x� [0, 1],

u(0, y)=0, u(1, y)=ey−1 sinh(2y)/sinh(2), y� [0, 1],

where a=1, c= (4, 2)T and the exact solution is

u(x, y)=e2x+y−3 sinh(x) sinh(2y)
sinh(1) sinh(2)

.

The corresponding first-order system is Equation (3) and the least-squares finite element
solutions compare favorably with the exact solution [27]. Representative solutions for uh and
wh (s= (6, w)T) are shown in Figure 4 as a surface plot and as projected contours for
uniprocessor computations on a 10×10 mesh of linear elements with 2×2 Gauss integration.

The next problem considered is stationary viscous flow governed by

9 · u=0, u · 9u+
1
r

9p−nDu= f, (21)
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where u is velocity, p is pressure, n is kinematic viscosity, r is constant density and f is the body
force term. We introduce the vorticity and rewrite this as the first-order system

(u
(x

+
(6

(y
=0, u

(u
(x

+6
(u
(y

+
1
r

(p
(x

+n
(z

(y
= f,

z−
(6

(x
+
(u
(y

=0, u
(6

(x
+6
(6

(y
+

1
r

(p
(y

−n
(z

(x
=g. (22)

Other formulations are also admissible, e.g. the stress components can be introduced explicitly
[13].

As a representative example, the flow of glycerine with n=6 cm2 s−1 in a cavity of size
10×6 cm was computed for the case where the vertical side walls are moving in opposite
directions at a velocity of 10/6 cm s−1. The equations are dimensionally scaled and the
solution is computed on a 20×20 mesh of bilinear elements (equal order basis for all
variables). Representative solutions are shown in Figure 5 for (a) streamlines and (b) vorticity,
where the streamlines are computed from the velocity field. Further results and mixing
calculation are given in References [30,27].

The problem is non-linear; therefore an iterative strategy is introduced. Here we use
successive approximation (i.e. set u((u/(x) as u (s)((u (s+1)/(x)) directly in the residual and then
the least-squares system is constructed for this linearized problem. For iterate s, the linear
algebraic system (10) becomes

A (s)x (s+1)=b (s), (23)

and PCG is applied to this system as before. Then A (s) is updated and the PCG step is repeated
using the current non-linear iterate as starting vector. As non-linear successive approximation
proceeds, the number of PCG iterations reduces accordingly.

4.2. PCG con6ergence

For the purpose of the present work, the iterative performance was first compared with
banded Gaussian elimination on a sequence of meshes with h=1/20, 1/30, 1/40, 1/50 for linear
elements on the model convection–diffusion problem (20). Uniprocessor results of this
comparison study on the CRAY/YMP are given in Figure 6 for computations with bilinear
elements. Performance results with biquadratic elements are essentially the same.

Figure 5. LSFECG solution for a viscous flow problem.
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Figure 6. Timing for PCG on CRAY/YMP.

Estimates of the extreme eigenvalues lmax, lmin can be computed using the tridiagonal part
of Q−1A and used to compute a condition number estimate k*. A graph of this estimated
condition number as a function of mesh size and the actual number of iterations (n) to achieve
convergence within a tolerance of 1.5×10−4 is provided in Figure 7. The respective slopes are
1.9 and 0.81, which implies that the number of iterations is approximately O(h−1) and is
consistent with the estimates stated earlier.

4.3. Performance 6ersus grid size and layout

Before we consider the parallel algorithm, uniprocessor performance as a function of grid
size is first studied for a sample grid block gx×gy with gx=gy. This will give the base
performance in terms of problem size. The effect of other choices of grid layout, i.e. gx\gy or
gxBgy, is then studied.

The problem size is Dt=gx×gy×Dp, where Dt is the total number of degrees of freedom.
The convection–diffusion problem (Dp=3) is first computed using gx=gy=10, 20, 40, 60, 80
and 90. Then the viscous flow problem (Dp=4) is computed with gx=gy=9, 17, 35, 52, and
70 so that the number of total degrees of freedom Dt are close at each grid level for both
problems. The matrix–vector product has been optimized here in assembly code for the
iPSC/860 and Paragon processors [29]. Only the results for the iPSC/860 will be presented
here. The behavior on other processors with different cache management will be different. The
CG rates on a single processor of the iPSC/860 increase from 6.38 to 12.54 mflop s−1 as the
total number of degrees of freedom increases from 300 to 24300 as indicated in Figure 8.
Performance increases significantly when the problem size increases and is good when there is

Figure 7. Condition and iteration numbers for J-CG.
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Figure 8. CG rates versus problem sizes on iPSC/860.

enough computation; e.g. the processor rate is 9.11 mflop s−1 on a 20×20 grid with three
DOF per grid point. Moreover, the performance is not sensitive to increasing the number of
degrees of freedom per grid point. This is very promising for applications involving many
degrees of freedom per grid point, such as the simulation of high speed non-equilibrium
chemically reacting gas flows in which there are several degrees of freedom per grid point [31].

Next, the effect of different choices of gx and gy is studied for the convection–diffusion
problem (Dp=3) on a fixed global grid size with g=6084. The time and rates for 500 CG
iterations on one processor of the iPSC/860 are indicated in Table III for several grid layouts.
The timing shows that the CG time increases 8% as gx is reduced from 234 to 26. The time for
DAXPY, DAYPX and DOT operations are approximately the same for different choices of
grid layout, but the time for MV varies by up to 10%. This is because the corresponding layout
of the matrix, ix (=1, . . . , gx) goes first in A(ix, iy, id, jd, is) [21]. Hence, selecting a large gx

during mesh partitioning will give a better performance on one processor or on multi-proces-
sors if there is a full overlap. However, if the number of processors is increased to the point
where communication overlap is not achieved, then the non-overlap part of communication
cost for MV is minimized when gx=gy since it is proportional to the perimeter 2(gx+gy) of
the subgrid as estimated in Equation (17). As gx is reduced in the above test, the perimeters
vary as 520, 396, 312, 396, 520, and the minimum perimeter corresponds to the square grid
gx=gy=78. Since the time difference with respect to grid layout is small for CG computation
alone, a better performance would be expected on a square subgrid for multi-processor
computation with communication cost. The MV rates vary from 12.02–13.41 Mflop s−1 and

Table III. Timing and rate versus grid layout on iPSC/860

Grid (gx×gy) Time Rate
(s) (Mflops s−1)

LSFECG MV CGDAXPY DAYPX DOT MV CG

13.4154.0746.8036.832.16 12.504.203.57234×26
53.92156×39 13.36 12.483.57 4.15 2.15 36.97 46.89

78×78 3.57 4.15 2.15 37.57 47.49 54.54 13.14 12.32
39×156 11.9612.7748.9238.682.15 56.094.473.57

50.9941.082.164.123.5726×234 58.16 12.02 11.48
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Table IV. Performance on a fixed global grid for C-D problem

Processor partition (Px×Py) LSFECG CG

Proc. rate Speed-upTime Time
(St)(Mflop s−1)(s) (s)

53.33 12.401×1 1.0062.41
27.93 11.841×2 32.56 1.91

10.8315.27 3.4917.612×2
10.78 3.481×4 17.66 15.34

5.959.228.9610.142×4
8.99 9.201×8 10.16 5.93
6.00 6.904×4 6.61 8.89

4.79 4.62 11.904.484×8

CG rates vary from 11.48–12.48 Mflop s−1 with different choices of layout. DAXPY,DAYPX
and DOT rates are near 10.26, 4.34 and 16.9 Mflop s−1 respectively in all cases and therefore
will not impact the performance under different choices of layout.

The above computation uses our special assembly-code kernel to manage the cache so that
the MV is computed with multi-output rows at a time which uses the cache more effectively
[29]. The Intel i860 on the iPSC/860 has a cache which can hold 1000 double precision
numbers. If a matrix–vector product generates one output row from three input rows in cache,
the maximum length of the row is 250. When the vector length is less, the performance is
degraded since the cache is not fully used. Under above test conditions and computing one
output row at a time, MV time increases by 39%, and CG time increases by 33% as gx is
reduced. In the multi-output row implementation, the variations of MV, CG and total time
(LSFECG) are only 10, 8 and 7% respectively, for different choices of grid layout.

The above results show that grid layout moderately affects the performance on a single
processor for large problems. If gy\gx, then the orientation of the axes should be reversed so
that the natural ordering occurs in the vertical direction. For small problems, communication
is a major consideration so that a square subgrid will minimize the communication cost as we
show later.

4.4. Parallel performance and scalability

The convection–diffusion problem (20) was next solved on multiple processors of the Intel
iPSC/860 distributed system. The global grid size is fixed with Gx=Gy=88, while the local
grid points vary with the different processor partitions Px×Py. For iteration tolerance 0.0001,
the CG scheme converged in 444 iterations for P ranging from 1 to 32 processors. The
speed-up can be simply defined as St=T1/Tp, where Tp is the computational time using P
processors. The parallel performance results are listed in Table IV. When two processors are
used, the time is almost reduced to half of the uniprocessor computation, and the speed-up is
1.91 which is close to the ideal speed-up of 2. As more processors are used, the speed-up is
progressively degraded because the ratio of communication time to computation time in-
creases. This is demonstrated by the tabulated results and by the graph in Figure 9. When 32
processors are used, the speed-up is 11.90 for CG and 13.03 for the total time (LSFECG),
respectively. Comparing the details of the speed-up for CG, MV, DAXPY, DAYPX and DOT,
they are 1.91, 1.93, 1.98, 1.84 and 1.63 when using two processors over one processor, and they
reduce to 1.34, 1.55, 1.29, 2.02 and 0.97 when using 32 processors over 16 processors. Notice
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Figure 9. The scalability of CG on iPSC/860.

that DOT has no speed-up for the 32 processor computation because the communication time
is longer than the computation time on each processor due to the small subgrid size. In
addition, the percentage of DOT time relative to CG time increases from 4.51% (one
processor) to 35.77% (32 processors), while the percentage of MV time to CG time reduces
from 72.22% (one processor) to 55.39% (32 processors). Therefore, the degradation of the
speed-up when using more processors mainly comes from the dot product.

Recall that the performance with one processor is better for a layout with larger gx. Here,
we see that the performance is better for a square subgrid because of the smaller number of
nodes on the subgrid boundary. For example, the rate of 10.78 mflop s−1 for a 1×4 processor
partitioning [2(gx+gy)=220] is not higher than the rate of 10.83 mflop s−1 for a 2×2
processor partitioning [2(gx+gy)=176]. A similar situation is observed when using more
processors.

The idea of scaled speed-up has been popularized as an alternative measure of parallel
capability. In this case the problem size is scaled proportionally with the number of processors
so that the processor grid size is fixed. Here, we take gx=gy=90 for each processor. The
scaled speed-up is then defined as Sr=P×Rp/R1, where Rp is the processor rate (Mflop s−1)
when using P processors. The scheme yields 94.09% of the ideal scaled speed-up for 32
processors as indicated in Table V. The time for the CG solution phase is for 500 CG
iterations. Obviously, the fine global grid will require more iterations for convergence than the
coarser global grids at lower P values. The processor rates are slightly reduced due to the
communication, as shown in Figure 9 for this fixed local grid size computation.

Table V. Performance for fixed local grid on iPSC/860 for C-D problem

Processor partition (Px×Py) LSFECG CG

Time Proc. rate Speed-upTime
(s) (Mflop s−1) (Sr)(s)

12.5462.1272.01 1.001×1
1.981×2 72.84 62.78 12.41

2×2 73.71 63.60 12.25 3.91
2×4 7.6912.0664.5874.70
4×4 11.8665.6775.79 15.13

66.01 30.1176.144×8 11.80
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Table VI. Performance detail for CG with 16 processors

Method Time Overall rateProc. rate
(Mflops s−1) (Mflops s−1)(s)

11.8665.67CG 189.8
50.00 13.15 210.4MV (total)
45.17 13.92MV (interior) 222.7

5.994.83 95.8HV (frame)
4.76 10.22DAXPY 163.5

69.94.37DAYPX 5.57
147.4DOT 5.29 9.21

The performance for 16 processors is summarized in Table VI. The CG, MV, DAXY, and
DOT rates in previous estimates (Table II) basically predict the real rates in Table VI. The real
rate for MV is higher than the estimate due to the use of cache and asynchronous communi-
cation. The rate for DOT is about the same as the estimate. The rate for DAXY is lower than
the estimate due to the implementation.

Similar parallel performance was observed for the viscous flow problem (22). Again we
consider the question of scaled speed-up for a sequence of uniform grids with fixed subgrid
problem size per processor. Performance results are listed in Table VII for the iPSC/860 and
are comparable with those in Table V. The number of grid points per processor is fixed as
gx=gy=70, but with four degrees of freedom per node. CPU times here are again reported
for 500 CG iterations. Note that the number of nodal degrees of freedom here has increased
from three in the previous problem to four, but the performance is essentially the same and
94.28% of the ideal scaled speed-up is achieved for 32 processors.

The above calculations show that the processor rate is slightly reduced for PB16, e.g. :5%
degradation for both problems in Tables V and VII. The processor rate almost remains
constant with further increase in the number of processors as expected. Therefore, not only is
the computation cost low in each processor with the use of cache, but the communication cost
is also low with the use of asynchronous communication for MV. This algorithm is especially
efficient when using a moderate to large number of processors. The scaled speed-up is 94% of
the ideal speed-up, which is good in the sense of fixed memory utilization [32]. This can be
compared with the NAS parallel benchmark for CG with parallelization based on matrix
partition for a model unstructured grid [3]. In their study the rates in Mflops s−1 have been
reported as: 215 for the Intel iPSC/860 with 128 processors, 457 for the Intel Paragon with 128

Table VII. Performance for fixed local grid on iPSC/860 for N-S problem

LSFECGProcessor partition (Px×Py) CG

Speed-upTime Time Proc. Rate
(Sr)(s) (s) (Mflop s−1)

63.8268 251×1 1.0012.62
1.9864.4968.98 12.482×1

65.26 12.3469.78 3.912×2
2×4 70.69 66.17 12.17 7.71
4×4 71.91 67.42 11.94 15.14

30.1772.16 67.67 11.904×8
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processors, 127 for the CRAY/YMP with one processor, 5178 for the CRAY/C90 with 16
processors, and 464 for the CRAY/T3D with 128 processors, respectively. Our rate for CG
with parallelization based on a simple domain partition for structured grids is 377 Mflops s−1

for 32 processors as shown in Table V, which scales to a rate of 1384 Mflops s−1 for 128
processors. Our CG rate scaled to 128 processors is seven times higher than that of the NAS
CG on Intel iPSC/860. This is due to two factors: (1) on each processor our cache treatment
is superior. The NASCG study uses the Yale sparse matrix format which is inefficient
compared with the compact stencil format. This is a gather/scatter issue and we show the need
to stream the data through the cache to obtain a good performance. For the i860 class
processor, implementing the cache mirror idea requires assembly coding. Our performance
here is four times faster than in NASCG. (2) The second factor is relative communication
performance. Our approach utilizes domain decomposition to partition the grid to processors
whereas the NASCG study uses row/column matrix partitioning strategies. This implies that
we can overlap stencil communication on the processor interfaces with computation in the
interior. Since our partitioning implies that few off-processor references are needed, communi-
cation overhead is reduced. More specifically, our communication is between adjacent subdo-
mains, which in practice will be few in number for any rational decomposition strategy. On the
other hand, partitioning the matrix (as in NASCG) may lead to less efficient communication.
For example, it has been demonstrated that matrix partitioning is an inefficient approach and
does not scale independently of whether partitioning is by rows and/or columns [4]. This
factor, in addition to the cache efficiency, results in the factor of seven difference in
performance for the two approaches.

The approach can be extended to use an element-by-element CG scheme for unstructured
grids [1,14]. Since the parallelization is still based on a simple domain partition, the perfor-
mance should be similar.

5. CONCLUDING REMARKS

Least-squares mixed finite elements for flow and transport problems are appealing because
they have interesting approximation properties and generate symmetric positive systems. It
follows that conjugate gradient schemes can be applied to solve these systems and their
iterative performance is therefore of interest. Part of the present study compares CG perfor-
mance with different preconditioning strategies against Gaussian elimination for problems of
increasing size. The conditioning of the system is shown to degrade linearly as the mesh is
refined when simple Jacobi (diagonal) preconditioning is applied. We also develop and test a
parallel implementation and provide scaled speed-up results. The scheme is demonstrated for
representative convection–diffusion and Navier–Stokes applications.

The scalability properties of an algorithm are important because they indicate how many
processors must be added so that run time remains constant as the problem size is increased.
A full scalability analysis is useful because it provides a comparison of the efficiency of the
algorithm on different machine architectures. However, as we see here, detailed consideration
such as the design of the inner MV kernel and partition layout can obscure true parallel
performance. A comparison with the NASCG results in Reference [3] shows that the present
scheme is seven times faster. This is due to the superior cache treatment and communication
treatment. There are also a number of different types of scalability measures that reflect
speed-up and resource relations. This includes not only the fixed problem size and scaled
speed-up considered here, but also the fixed run time and memory scalability, among others.
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Some of these ideas and related iso-efficiency concepts are considered in Reference [33]. We
remark in closing that the approaches for cache management and communication are not
restricted to the present least-squares formulation but can be used with other discretization
methods and other generalised gradient-type iterative solvers. We also emphasize that the
approach can be extended to a subdomain element-by-element or similar framework for
unstructured grids on irregular subdomain partitionings.
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